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LETTER TO THE EDlTOR 

A quantum version of the Nekhoroshev theorem* 

Marcin Moszyriski 
Instytut Matematyki Slosowanej i Mechaniki, Uniwersytet Wanzawski, ul Banacha 2. 
02-091 Warsmwa, Poland 

Received 29 November 1991 

Abstract Using a simple method, we prove that the quantum propagator for some poly- 
nomially perturbed harmonic oscillators is dose to the propagator for the unperturbed 
oscillators for a small coupling constant and arbitrarily large times. 

In this letter, we study the quantum propagator for polynomially perturbed harmonic 
oscillators for a small coupling constant E. We are interested in the problem of when 
the difference between the propagator of the perturbed oscillators and the propagator 
of unperturbed oscillators is of order O ( E ~ )  for large times. The Nekhoroshev theorem 
is the main result concerning the classical analogue of this problem (see [2]). The 
quantum case was studied by Herczyriski [4], who obtained a number of results by 
using the Lie perturbation method. In this letter, using a simple method we establish 
a result which is in some sense stronger than one of the main results of [4]. 

The letter is organized as follows. First we introduce some notation which makes 
it possible to formulate the results in a form formally resembling the statement of the 
Nekhoroshev theorem. We then prove the main theorem. We close the letter with 
several remarks, including a wmment on a semiclassical blow-up of the estimates 
obtained. 

Let Ho be a self-adjoint operator with purely discrete spectrum in a separable 
Hilbert space 2. Let {e,),,,,M be an orthonormal basis consisting of eigenvectors of 
Ho indexed by a countable set M. For each m E M, let E, be the eigenvalue correspond- 
ing to e,,,. As usual, we let R+ = { r  E R: r 3 0)  and denote by B the group of complex 
numbers with unit modulus identified with the quotient group W/ZlrZ. Let U: 2+ 
R y  x T M  be the map defined by 

U ( x )  = ( A b ) ,  ~ ( x ) )  X € 2  

where A ( x )  =(A,,,(x)),,,.~ER? and q ( x )  = ( q , , , ( x ) ) , , , ~ T ~  are uniquely deter- 
mined by the identity 

x = E A&) exp(-iq,,,(x))e, (10) 
*GM 
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with the convention that arg(0)=0. Let exp(-irHo), f e R ,  be the propagator in Z 
corresponding to Ho. Clearly, for each X ~ E  X and each t E R, 

x, =exp(-irHo)xo= 1 A,(xo) exp[-i(cp,(x,)+tE,)]e, 
, G M  

whence 

ifA,(xo)#O 
otherwise. (K(x0)) ,  = { ," 

We thus see that the evolution x, is almost periodic in the 'coordinates' (A, Q ) .  Following 
the terminology commonly used for integrable systems in classical mechanics, we shall 
call the mappings A and Q the action coordinate and the angle coordinate for the 
operator Ho, respectively. 

Note that when all the E, are simple, then the action coordinate is, up  to a 
permutation of M, uniquely determined by the operator H,,. Moreover, the angle 
coordinate is uniquely determined up to a shift in the group T M  (for x E &" with 
A,(x)  # 0, m E M ) ,  the ambiguity resulting from the freedom of choice of a normed 
eigenvector corresponding to a given eigenvalue of Ho up to a scalar of unit modulus. 
Hereafter, when speaking about the angle variable of Ho, we shall always assume that 
an initial choice of the eigenvector basis has been made. 

To compare values of the action coordinate for various x E X, we introduce the 
following metric p in Ran A = R y  n 12(M): 

r 1 1 1 2  

If we let II.II be the norm in X, then clearly, for any x, y E Z, 

p ( A ( x ) ,  A(y))S IIx-yII. (4) 

Assume that Ho is the Schrodinger operator in L2(Wd) for non-resonant d- 
dimensional harmonic oscillators, 

with ( U , ,  . . . U,,) = o E R$ satisfying the condition 

0 .  v # 0 for Y E  Z d  Y # O  (6)  

where U' Y = Xy-l ojvj .  Let IvI = X;=, IujI. The operator Ho has purely discrete spectrum 
consisting of eigenvalues E,,( U )  = Au. v, ueNd.  In view of (6) ,  all the Eo( U) are simple. 
As eigenvectors e, one can take suitable Hermite functions. Herczyriski in [4] considers 
perturbations of Ho of the form 

H.=H,+EV (7) 

where E > 0 and V is the operator of multiplication by a real, bounded-below poly- 
nomial V ( q )  of degree k The sum in (7) is to be interpreted as the closure of the 
appropriate essentially self-adjoint operator on C7(Rd). One of the main results of 
[4] is a kind of quantum version of the Nekhoroshev theorem. 



Letter to the Editor L445 

Theorem 1. Let o be such that 

I w . u l - ' ~ C , l u l ' f o r v ~ Z ~  U f O  (6') 

for some C, > 0 and y > 0. Let PE be the orthogonal projection on span (e, : Eo( v )  s E) 
and let Kj be the operator diagonal in the basis {e,),,Nd, given by the equality 
K,e, = E j (  u)e,, where Ej( u) ,  j = 0, 1, . . . , are the coefficients in the formal Rayleigh- 
Schrodinger series for the perturbed eigenvalue &(U) of the operator H. near 
Eo(v) .  Then there exist C>O, B>O, and D>O such that if E 3 1, fi < 
min(1,E(kmaxj=,. . . . . d W j ) - ' )  and O<E<BE*,  then there exists r(E)EN such that 
K.  = x$$ E'K, satisfies 

Il(exp(-ifH,/fi) -exp(-itK./fi))P, (1 s CK"E'/'E" ( 8 )  

for ItJ<fien exp[(e,/s)"], where e*=DfiE-*"and n = ( y + d + Z + k / Z ) - ' .  

The proof of the above theorem relies on the adaptation of the Lie method to the 
quantum setting ([4]; see also [l]). 

Theorem 1 can be reformulated in terms of action coordinate for the unperturbed 
operator Ho. With M = Nd, let A: L ' ( R d )  + R," be the quantum action coordinate for 
Ho such that A,(x)=I(x, ev)l,  v e N d .  Denote, as before, x,,,=exp(-itHe/fi)xo for 
xoe L'(Rd) and f E R. The following is a simple consequence of theorem 1. 

Theorem 2. Under the assumptions of theorem 1, if xOe Ran PE and Ilxoll s 1, then 

p(A(xe,,)A(xo)) S Cfi-"E*/'e" (8') 

for I t l< fiem exp[(e,/e)"]. 

Roof: Since K .  is diagonal, we have A(exp(-ifKJfi)x,) = A(xo). Now, we obtain (8') 
U 

Theorem Z may he regarded as a still closer quantum analogue of the classical 
result of Nekhoroshev. However, as we shall prove, theorem 2 is far from being optimal. 
More precisely, under similar assumptions, the estimate of type (8'). i.e., p(A(x,,,), 
A(xo))s C(fi, E )eb  is valid for arbitrarily large times. This result will be formulated 
as theorem 3. 

Hereafter, retaining the assumptions from the theorem on asymptotic behaviour of 
Rayleigh-Schrodinger series (see [6, theorem XII.14]), we assume that 

lo. V is the operator of multiplication by a real, measurable function, such that 
( e V J u e N d  c D (  V) and the operator He = Ho+ E V  is a certain self-adjoint extension of 
the above sum defined on span (e": u e N d } t ;  

by invoking (4) and ( 8 ) .  

2'. lime,o+ II(H.-Z)-'-(H~-Z)-~II=O for some zeu(Ho) .  

Theorem 3. If V satisfies 1' and Z0, then for every E > 0 there exist eo> 0 and 2. > 0 
such that for 0 < E < eo and X ~ E  Ran PE with llxoll s 1 

p ( A ( x , , ) ,  A(xo))S 2.e (8") 
for all I E R, 

t ?%is self-adjoint extension need not be unique; the existence of at least one such extension is guaranteed 
by a theorem of van Neumann (see 16, theorem X.31). 
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Prooj Using arguments similar to those used in the proof of [6, theorem XII.141, we 
infer that for any u € N d  there exists &(U) such that for Os E <  E (  U) the operators 

are well defined and converge in norm to Po( U) as E +Of, provided 6, is chosen so that 

4Ho)  n [ E o ( u )  - 2 L  E o ( u ) + ~ & I  = {&4~)}. (9) 
Each P,(u)  is the projection onto the space spanned by the (usually non-normalized) 
eigenvector Pe( u)e, of H,, denoted which corresponds to the unique eigenvalue 
E,( U) satisfying 11 Eo( U) - E,( U) 11 < 6,. By 1' and the second resolvent formula, 

I1 e , ,  - e, I1 = ll(ps ( U )  - pO(u))e, I1 

II ( ( H o -  z)-'- (He -z)-')e- dz sk II Lo(")l=*" 
s ES, sup ll(H~-z)-'V(Ho-z)-'e,ll 

I=-Eo(~)l=6, 

s&lIWI SUP ~ l ~ o ~ ~ ~ - ~ l ~ ' l l ~ ~ ~ - ~ ~ ~ ' ~ l ~ .  
I r - € d ~ ) l = a .  

Note that, by 2O,  (H, - z)-' converges in norm to ( Ho - z)-' as E + 0+, uniformly for 
z from an arbitrary compact subset of the resolvent set of Ho. Now, one can choose 
e'( U) with 0 < e'( U) s E (  U) so that, for each O <  E < E( U), 

II - e,ll s $ 4  VeJl SUP ll(Ho- z)-'ll. 
I z - E d ~ W S V  

BY (91, 
IIe,.-e,II~f~;'IIVe,IlE. (10) 

Given E > 0, let 
x, = Z,,,,,,, cue,, for any E E (0, E,,) and any t E W, denote 

= infEo(n)sE e'( U) and let xo E Ran PE be such that Ilxoll S 1. Letting 

= C cue,, 

=exp(-irH./h)ie.o= c, exp(-irE,(u)/h)e,,,, 
EO(")'E 

E d u ) S E  

and 
ic,,,= c,exp(-irE,(u)/h)e,. 

&(-) -E 

Since exp(-ifH,/h) is unitary, we have 

llxe.#-i8.,ll = l l ~ o - ~ e , o l l  

and therefore 

Analogously we have 
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Furthermore A(%,,)=A(x,) ,  so using (41, ( lo ) ,  ( l l ) ,  and (12), we obtain (8”) with 

Remarks 

1. The fact that the estimate (8’,8”) is valid for arbitrarily large times may be 
surprising at first, as this is much better than the estimate in the classical Nekhoroshev 
theorem. One can heuristically explain this phenomenon by noting that the classical 
counterpart of the case described by theorem 3 is a very rare instance in classical 
mechanics when the perturbed system is integrable for all E E (0, E ) .  The quantum 
analogue of the classical integrability is the pure discreteness of the spectrum of the 
corresponding unperturbed Schrodinger operator. A technical explanation of the 
‘overperformance’ in theorem 3 goes as follows. In the proof of theorem 3, the unitary 
map + e,, which is close to the identity in a suitable operator topology, is used to 
diagonalize H.. In contrast, in the proof of theorem 1, a unitary operator which is a 
small perturbation of the identity, determined by means of the Lie method, brings H, 
to the form K ,  + R, with K ,  diagonal and R, small but different from zero. It is the 
presence of the latter summand that is responsible for the estimates (8) and (8’) in 
theorems 1 and 2 being valid for long, but not arbitrarily long, times. 

2. Interesting examples of potentials V to which theorem 3 can be applied are 
provided by polynomials. For conditions 1’ and 2’ to be satified, it is sufficient that V 
be a polynomial positive on the unit sphere, homogeneous, and of even degree; this 
follows from [6, section XlI.31 (see also [3] and [7]). Note that, despite suggestions 
in [ I ]  and [4], it is not proved in [ 6 ] ,  [3] and [7] that it is enough to assume V to be 
a bounded-below polynomial only. On the other hand, bounded potentials satisfy tbe 
assumptions of theorem 3. 

3. It is rather difficult to estimate the dependence of E’, in theorem 3, on h and 
E. For the constant C? this is easier, if we assume (6‘). We then have 

6,Z i?E-Yh‘+Y 

hence, if V is a polynomial of degree for h < 1 and E > k maxi=,,...d wir we obtain 
~~~‘+*/2+d/Zh-(I+y+d/2)  

where 6 and i? depend only on w and V.  This inequality is a simple consequence of 
(13) and the fact that IIVPEII<6Ekf2 (see [4]). So, from the point of view of h, the 
estimate (8’) is better than ( 8 ) ;  however, from the point of view of E, (8”) is better, 
because a < f in theorem 2. 

4. It seems unnecessary to assume in theorems 1 and 2 that the suitable Rayleigh- 
Schrodinger series is Bore1 summable to the perturbed eigenvalue, or even that V is 
bounded-below (see [4]). Similarly it is not essential that E > 0. So these theorems can 
be applied to a larger class of potentials than theorem 3. Obviously, the assertion of 
theorem 3 is valid also for E < O  (with I E ~  at the right-hand side of (8”)) if ‘lims+o+’ in 
1’ is replaced by ‘lims+,’ (such an assumption restricts severely the class of admissible 
potentials). 

5.  From the technical point of view, the choice of the metric p (see (3)) seems to 
be natural. However, from the point of view of the transition from classical to quantum 
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mechanics, another choice may be more natural, for instance 
I f  2 

P'(C, D ) =  [ " G N  Ed (C.-D.)'(E,(v)+jRlwl)] . 

6. Another typical example of a classical integrable system to which the 
Nekhoroshev theorem can be applied is the Hamiltonian of free rotators. It would be 
interesting to establish an analogue of theorem 3 in this case. The Schrodinger operator 
tu, I I U I I - L ~ U U I I ~ L I L  L a r s  L U l l l l U l J  11.10 .11DU yulrLy "llrlrlr qJ'rrrrurrr "Ut LI IC:  G,gcLL"a,uGb 

are not simple (see, e.g., [ 5 ] ) .  This fact is a source of difficulties. We have a freedom 
of choice of quantum action coordinates and it is easy to prove that a result similar 
to theorem 3 holds if the choice is made appropriately. However, such a choice 
essentially depends on the perturbation V, and so the corresponding result is rather 
distant in nature from the Nekhoroshev theorem. 

7. The constants in theorems 2 and 3 depend on R in such a way that the 
semicalssical limit h + 0 does not exist. Accordingly, it is only with abuse of language 
that one may dub these results quantum Nekhorosbev theorems. It remains an open 
problem to prove a theorem that could deservedly be qualified as a quantum 
Nekhoroshev theorem. 

This work has benefited from helpful comments of Wojciech Chojnacki and Jan 
Herczyhski. 
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